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Escape from intermittent repellers: Periodic orbit theory for crossover
from exponential to algebraic decay

Per Dahlqvist
Mechanics Department, Royal Institute of Technology, S-100 44 Stockholm, Sweden

~Received 27 May 1999!

We apply periodic orbit theory to study the asymptotic distribution of escape times from an intermittent
map. The dynamical zeta function exhibits a branch point which is associated with an asymptotic power law
escape. By an analytic continuation technique we compute a pair of complex conjugate zeroes beyond the
branch point, associated with a preasymptotic exponential decay. The crossover time from an exponential to a
power law is also predicted. The theoretical predictions are confirmed by numerical simulation. Applications to
conductance fluctuations in quantum dots are discussed.@S1063-651X~99!13812-1#

PACS number~s!: 05.45.2a, 73.23.2b
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I. INTRODUCTION

Exponential distribution of escape times from chao
scattering systems should be expected only if the assoc
repeller is hyperbolic. For intermittent repellers one expe
asymptotic power law decay@1,2#. Nevertheless, in numeri
cal simulations one often observes what appears to be a
fect exponential@3,4#. As we will show here, the crossover t
a power law may be hard to detect, because the cross
time may be so long to preclude any descent statistics.

The importance of intermittency cannot be overemp
sized. A generic Hamiltonian system exhibits a mixed ph
space structure. A typical trajectory is intermittently trapp
close to the stable islands@5#. But even ergodic billiards may
exhibit intermittency, typically if they have neutrally stab
orbits. Popular billiards such as the Stadium and the S
billiards are of this type.

A quantum dot is an open scattering system in two dim
sions, obtained by connecting leads to a cavity. Inspired
quantum chaos research, one likes to contrast shapes o
cavity corresponding to chaotic motion, such as the stadi
with shapes corresponding to integrable motion, such a
the rectangle or the square. Both extreme cases are sen
to naturally occurring imperfections and one naturally en
up with mixed phase space systems where one compo
hopefully dominates. Consequently, the signals of unde
ing chaos or integrability do not show up in as clear c
manner as one would have hoped for.

So far, most of the published analysis of these proble
has been numerical and heuristic. In this paper, we ob
from the periodic orbit theory quantitative predictions co
cerning the asymptotic distribution of escape times from
intermittent map. We will demonstrate that apreasymptotic
exponential escape law is associated with a pair of comp
conjugate zeroes of the zeta function. These zeros wil
computed with a resummation technique introduced in R
@6#. The truly asymptotic escape distribution will be a pow
law, and is associated with a branch point of the zeta fu
tion. The strength of this power law will also be provided
the resummation scheme, with the exponent determined f
the analytic form of the marginal fixpoint. The relative ma
nitudes of the pre-exponential and the power law will yield
PRE 601063-651X/99/60~6!/6639~6!/$15.00
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good estimate of the crossover time, which will be surpr
ingly high.

II. ESCAPE AND PERIODIC ORBITS

Much of the early work on cycle expansion@7# was con-
cerned with escape from~hyperbolic! repellers, so we can
follow Ref. @7# rather closely when deriving the basic form
las relating escape to the periodic orbits of the repeller. C
sider a one-dimensional~1D! map, on some intervalI, with L
monotone branchesf i(x) where 0< i<L21. Each branch
f i(x) is defined on an intervalI i . A generating partition is
then given byC (1)5$I 0 ,I 1 . . . I L21%. We want the map to
admit an unrestricted symbolic dynamics. We therefore
quire all branches to map their domainf i(I i)5I onto some
interval I .C (1) coveringC (1). A trajectory escapes when
ever some iterate of the mapx¹C (1).

The nth level partition C (n)5$I q ;nq5n% can be con-
structed iteratively. Hereq are words of lengthn built from
the alphabetA5$ i ;0< i<L21%. An interval is thus defined
recursively according to

I iq5 f i
21~ I q!, ~1!

where iq is the concatenation of letteri with word q. A
concrete example will be given in Eq.~16! and Fig. 1. Next
define the characteristic function for thenth level partition

x (n)~x!5(
q

(n)

xq~x!, ~2!

where

xq~x!5H 1 xPI q ,

0 x¹I q .
~3!

An initial point surviving n iterations must be contained i
C (n). Starting from an initial~normalized! distributionr0(x)
we can express the fraction that survivesn iterations as

Gn5E r0~x!x (n)~x!dx. ~4!
6639 © 1999 The American Physical Society
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We choose the distributionr0(x) to be uniform on the inter-
val I. The survival probability is then given by

Gn5a(
q

(n)

uI qu, ~5!

where

a215E
I
dx5uI u. ~6!

Assuming hyperbolicity the size ofI q can be related to the
stability Lq5(d/dx) f n(x)uxPq of periodic orbitq̄ according
to

uI qu5bq

1

uLqu
, ~7!

where bq5O(uI u), can be bounded close to the size ofI.
This results from the fact that~i! f n(I q)5I , ~ii ! the smallness
of uI qu, and ~iii ! the fact that derivative is bounded by th
assumption of hyperbolicity. We will eventually relax th
assumption, but for the moment we will stick to it.

The survival fraction can now be bounded by a sum o
periodic orbit according to

C1~N!(
q

(n)
1

uLqu
,Gn,C2~N!(

q

(n)
1

uLqu
~8!

for all n.N.
The periodic orbit sum in Eq.~8! will be denotedZn

(
q

(n)
1

uLqu
[Zn ~9!

FIG. 1. The intermittent map~16! for the parameter valuess
50.7 andp51.2. The map is defined on the intervalI. Below the
map is also shown the partitionsC (1)5$I 0 ,I 1%, C (2), andC (3).
r

and can be rewritten as a sum over primitive periodic orb
~periodnp) and their repetitions

Zn5(
p

np(
r 51

` dn,rnp

uLpur
. ~10!

It is closely related to the trace of the Perron-Froben
operator

Zn'tr L n5E dx d@x2 f n~x!#5(
p

np(
r 51

` dn,rnp

uLp
r 21u

.

~11!

By introducing the zeta function

z21~z!5)
p

S 12
znp

uLpu D , ~12!

Zn can be expressed as a contour integral

Zn5
1

2p i Eg
z2nS d

dz
logz21~z! Ddz, ~13!

where the small contourg encircles the origin in negative
direction.

The expansion of the zeta function to a power series
usually referred to as acycle expansion:

z21~z!5( cnzn. ~14!

This representation converges up to the leading singula
Its domain of convergence is therefore usually larger th
that of the product representation~12!, which diverges at
~nontrivial! zeroes. If the zeta functionz21(z) is analytic in
a disk extending beyond the leading zeroz0, then the peri-
odic orbit sumZn , and hence the survival probabilityGn ,
will decay asymptotically as

Zn;z0
2n[e2kn, ~15!

wherek5 ln z0 is the escape rate.
We will introduce intermittency in connection with a sp

cific model. We then consider an intermittent mapx° f (x)
with two branches (L52), where I is chosen as the uni
interval

f ~x!5H f 0~x!5x„11p~2x!s
… xPI 05$x;0<x,j%,

f 1~x!52x21, xPI 15$x;1/2<x<1%.
~16!

The map is intermittent ifs.0 and allows escape ifp.1.
The map is shown in Fig. 1, together with some of its pa
tions. The right edge of the left branchI 0, here denotedj, is
defined implicitly byf 0(j)51. The trajectory escapes whe
j(s),x, 1

2 .
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PRE 60 6641ESCAPE FROM INTERMITTENT REPELLERS: . . .
The intermittent property is related to the fact that t
cycle 0̄ is neutrally stablef 8(0)51. Consequently, cycle
stabilities can no longer be exponentially bounded w
length. This loss of hyperbolicity makes it difficult to rela
the survival probabilityGn to the periodic orbit sumZn .
Indeed, Eq.~7! is brutally violated in some cases, as can
realized from the following example. The problem of inte
mittency is best represented by the family of periodic orb
10k. It follows from Eqs.~1! and ~16! that uI 10ku5 1

2 uI 0ku. It
can be shown@6# that uI 0ku;1/k1/s and thus

uI 10ku;
1

k1/s
~17!

which should be compared with the asymptotic behavior
the stabilities

1/L10k;
1

k111/s
. ~18!

The difference in power laws seems to spoil every po
bility of a bound such as Eq.~8!. However, Eq.~7! is not
necessary to establish a bound such as Eq.~8!. It suffices if
the ratio

Rp5
uLpu
np

(
k51

np

uI S kpu ~19!

stays bounded. That it to say that it suffices if theaverage
sizeof the intervals along a cycle can be related to the s
bility, rather than each interval separately. HereS denotes
the cyclic shift operatorS(p5s1 ,s2sn)5s2sn ,s1. We check
this numerically on two sequences 10k and 110k, the former
being most prone to intermittency. The result is plotted
Fig. 2. We note that for both sequences,Rp appear to tend to
well defined limits, where 10k exhibit the largest deviation
from unity. Indeed, it is reasonable to assume that the
quence 10k provides a lower bound

Rp. lim
k→`

R10k, ;p. ~20!

FIG. 2. The quantityRp plotted for the sequencesp510k and
p5110k versus lengthnp .
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In view of this, the numerical results strongly suggest thatRp
stays bounded, and that, for this particular system,C1 in Eq.
~8! can be chosen asC150.5 andC2 presumably close to
unity. This is a surprisingly low price to pay for the compl
cation of intermittency.

The sizes of the intervalsI 0n has no relation whatsoever t
the stability of the cycle 0̄~being unity!. We exclude the
intervals I 0n from our considerations bypruning the fixed
point from the zeta function

z21~z!5 )
pÞ0

S 12
znp

uLpu D . ~21!

The contribution fromI 0n to Gn can be added separately
required. Since the results rely on summation along perio
orbits, it might break down for some choices of the initi
distributionr0(x).

III. RESUMMATION AND SIMULATION

After having argued that the survival probabilitiesGn still
can be bounded close to periodic orbit sumsZn we turn to
the problem of computing the asymptotics of these qua
ties. The coefficients of the cycle expansion~14! for the map
~16! decay asymptotically as

cn;
1

n111/s
, ~22!

which induces a singularity of the type (12z)1/s in the zeta
function @6#. If 1/s is an integer, the singularity is (1
2z)1/s log(12z).

To evaluate the periodic orbit sum it is convenient to co
sider a resummation of the zeta function around the bra
point z51:

z21~z!5(
i 50

`

ciz
i5(

i 50

`

ai~12z! i1~12z!1/s(
i 50

`

bi~12z! i .

~23!

In practical calculations one has only a finite number of c
efficients ci , 0< i<nc of the cycle expansion at disposa
Herenc is the cutoff in~topological! length. In Ref.@6# we
proposed a simple resummation scheme for the computa
of the coefficientsai and bi in Eq. ~23!. We replace the
infinite in Eq.~23! sums by finite sums of increasing degree
na andnb , and require that

(
i 50

na

ai~12z! i1~12z!1/s(
i 50

nb

bi~12z! i

5(
i 50

nc

ciz
i1O~znc11!. ~24!

One proceeds by expanding (12z) i and (12z) i 11/s around
z50, skipping all powersznc11 and higher. Ifna1nb12
5nc11 one is then left with a solvable linear system
equations yielding the coefficientsai andbi . It is natural to
require thatunb11/s2nau,1 so that the maximal powers o
the two sums in Eq.~24! are adjacent. Then, for each cuto
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6642 PRE 60PER DAHLQVIST
length nc the integersna and nb are uniquely determined
and one can study convergence of the coefficientsai andbi ,
or various quantities derived from them~see below!, with
respect to increasing values ofnc .

If the zeta function is entire~except for the branch cut! the
periodic orbit sumZn can be written

Zn5(
a

za
2n1

1

2p i Egcut

z2nS d

dz
logz21~z! Ddz. ~25!

The sum is over all zeroesza of the zeta function~assuming
they are not degenerate! and the contourgcut goes round the
branch cut in anti clockwise direction. If poles and/or natu
boundaries are present, expression~25! must be modified
accordingly.

The leading asymptotic behavior is provided by the vic
ity of the branch pointz51, and is found to be@8#

Zn;
b0

a0

1

s

1

G~121/s!

1

n1/s
, n→`. ~26!

The relevant ratiob0 /a0, obtained from the resummatio
scheme, versus cutoff lengthnc is plotted in Fig. 3. In all
numerical work we have used the parameterss50.7 andp
51.2 and computed all periodic orbits up to length 20. T
convergence in Fig. 3 is perhaps not overwhelming but
should bear in mind that we study a quantity which wou
diverge in a conventional cycle expansion; we are not me
accelerating convergence as in Ref.@6#, we are actually at-
tempting an analytic continuation.

There is also a pair of complex conjugate zeroes,z05x0
6 iy0 beyond the branch cut. They contribute both to t
residue sum in Eq.~25! and to the integral around the cut
Eq. ~25!. But since their imaginary parts6y0 are small, they
will, in effect, contribute a factorx0

2n to the periodic orbit
sum Zn . This zero will dominateZn in some range 0!nc
!ncrossbefore the asymptotic power law sets in.

In Fig. 4 we study the convergence of the real and ima
nary part of z0 obtained from the resummation schem
above, for different cutoffsnc . The zero is computed by
Newton-Raphson iteration of the left hand side of Eq.~24!,
with coefficientsai and bi provided by the resummatio

FIG. 3. The ratiob0 /a0 versus cutoff lengthnc .
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scheme, for various value of the cutoff lengthnc . Again we
note that the analytic continuation technique works quite s
isfactorily.

The probability of escaping at iterationn is

pn5Gn212Gn . ~27!

We get for this distribution

pn'H x0
2n , 0!n!ncross,

b0

a0

1

s2

1

G~121/s!

1

n111/s
, ncross!n.

~28!

Here we have neglected the intervalI 0n, having the same
asymptotic decay law as the periodic orbit sumZn . Due to
the uncertainty in the bounds~8! it can be neglected.

The crossovern5ncrosstakes place when the two terms
Eq. ~28! are of comparable magnitude. For our standard
of parameters (p51.2, s50.7) it is found to bencross
'300.

To check our predictions we run a simulation of the sy
tem. The result can be seen in Fig. 5. We note that the s
of the exponential, the power and magnitude of the pow
law, as well as the crossover time agrees very well with
predictions.

A reader still in any doubt on the effectiveness of a
summed cycle expansion should consider the following. T
simulation in Fig. 5 averaged over 108 initial points, yet, in
itself the result would not be very conclusive. A direct eva
ation of Zn up to sayn5600 would require roughly 10170

periodic orbits. We have not bothered to perform such
cross check. But a resummed cycle expansion provides
able answers with a length cutoff as low asnc515, corre-
sponding to 4719 prime cycles. Admittedly, we benefit
from knowing the asymptotic power law of the cycle expa
sion. However, if this is not the situation, this power law
easily extracted if one uses stability ordering@8#.

FIG. 4. The real and imaginary part of lnz0 versus cutoff
lengthnc .
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IV. A ZERO IS CUT IN TWO

The occurrence of a dominating zero beyond the bra
point is, in fact, very natural and probably generic for a wi
class of open systems. Consider the one-parameter fami
zeta functions

z21~z;b!5)
p

S 12
znp

uLpub
D . ~29!

For small enoughb there is a leading zeroz0(b) within the
domain of convergenceuz0(b)u,1. This is related to the
topological pressure@9,10# according toP(b)52 logz0(b).
For instance,P(0) is the topological entropy. For a certainb
~actually the fractal dimension of the repeller! the zero col-
lides with the branch pointz51, splits into two, and the
complex conjugate pair continues to move out beyond
branch point. This is an example of a phase transit
@10,11#.

In Fig. 6 we plot the logarithm of the leading zero~s!
@2 ln z0(b)# versusb. It is obtained from a resummatio
analogous to the one discussed above, see Ref.@6#. It can be
interpreted as the topological pressure only as long it is r

V. MESOSCOPIC DISCUSSION

The particular form of the distribution of escape tim
does depend on the initial distributionr0(x). In this paper
we have restricted ourselves to a uniform initial distributio
To model chaotic scattering one must imagine that partic
can be injected according to any distribution. For examp
one can construct a chaotic scatterer from a bounded bill
by drilling holes anywhere on the boundary and injecti
particles with any conceivable distribution of angles. Th
may even effect the asymptotic power law@12#. Periodic
orbit theories can also account for other initial distributio
than uniform. However, the preceding discussions about
lating periodic orbit sums to survival probabilities warns
to be cautious when doing so for intermittent systems. A
appears, the general rule of thumb, first an exponential, t
a cross over to some power law, can be extended to o

FIG. 5. Distribution of escape times obtained from simulati
~shaky curve! and the pre-exponential~full line! and the asymptotic
power law~dashed line! obtained from resummation.
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Hamiltonian systems with a mixed phase space struc
@2,12#.

An immediate application concerns conductance fluct
tions in quantum dots@13#. The Fourier transformĈ(x) of
the correlation functionC(Dk)5^T(k)T(k1Dk)&k , where
T(k) is the transmission as function of the Fermi wave nu
ber, can, after several approximations, be related to the
cape distributionp(L) @13#

Ĉ~x!;E
0

`

dLp~L1x!p~L !. ~30!

If there is a crossover to a power law inp(L) there will be an
associated crossover inĈ(x). For an intermittent chaotic
system, the crossover time may be very long—the quasire
lar region component of phase space will not make its
noticed until very long times. If the elastic mean free path
electrons is much shorter than the length corresponding
the crossover time, the quasiregular component will neve
detected in this type of experiment. Or the other way arou
a small deviation from an integrable structure induces c
otic layers in phase space. This chaotic layer may lead
exponential escape for small times, and the experimental
come may very well resemble predictions for fully chao
systems.

In experiments a~weak! magnetic field is a more natura
control parameter than the Fermi energy. Instead of the
tribution of dwelling times one has to consider the distrib
tion of enclosed areas, a related but more subtle con
which we plan to address in future work. One has obser
Lorentzian shape~predicted for chaotic systems! of the so
called weak localization peak even in near integrable str
tures @14#. This has been attributed to naturally occurrin
imperfections@15,16# and rhymes well with the classica
considerations above. Admittedly, we have now moved
from our original intermittent map and entered the realm
speculation. What we do want to point out in this paper
that these kind of problems are well suited for periodic or
computations—zeta functions are powerful tools for mak
long time predictions, even for intermittent chaos, once
problems of analytical continuation can be overcome.

FIG. 6. The real and imaginary part of the leading zero~s! versus
the thermodynamic parameterb.



n
a

nd
as
ncil

6644 PRE 60PER DAHLQVIST
ACKNOWLEDGMENTS

I am grateful to Hans Henrik Rugh for pointing out a
inconsistency, in an early version of this paper, and to C
Dettmann and Predrag Cvitanovic´ for critical reading and
ev

m

rl

suggestions. I would like to thank Karl-Fredrik Berggren a
Igor Zozoulenko for stimulating discussions. This work w
supported by the Swedish Natural Science Research Cou
~NFR! under Contract No. F-AA/FU 06420-314.
s

@1# M. Ding, T. Bountis, and E. Ott, Phys. Lett. A151, 395

~1990!.
@2# H. Alt et al., Phys. Rev. E53, 2217~1996!.
@3# R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. R

Lett. 65, 2442~1990!.
@4# W. Bauer and G. F. Bertsch, Phys. Rev. Lett.65, 2213~1990!.
@5# R. S. MacKay, J. D. Meiss, and I. C. Percival, Physica D13,

55 ~1984!.
@6# P. Dahlqvist, J. Phys. A30, L351 ~1997!.
@7# R. Artuso, E. Aurell, and P. Cvitanovic´, Nonlinearity 3, 325

~1990!; 3, 361 ~1990!.
@8# C. P. Dettmann and P. Dahlqvist, Phys. Rev. E57, 5303

~1998!.
@9# D. Ruelle,Statistical Mechanics, Thermodynamic Formalis
.

~Addison-Wesley, Reading, MA, 1978!.
@10# C. Beck and F. Schlo¨gl, Thermodynamics of Chaotic System,

Vol. 4 of Cambridge Nonlinear Science Series~Cambridge
University Press, Cambridge, 1993!.

@11# R. Artuso, P. Cvitanovic´, and B. G. Kenny, Phys. Rev. A39,
268 ~1989!.

@12# A. S. Pikovsky, J. Phys. A25, L477 ~1992!.
@13# H. U. Baranger, Physica D83, 30 ~1995!.
@14# J. P. Birdet al., Phys. Rev. B52, 14 336~1995!.
@15# I. V. Zozoulenko and K.-F. Berggren, Phys. Scr.T69, 345

~1997!.
@16# I. V. Zozoulenko and K.-F. Berggren, Phys. Rev. B54, 5823

~1996!.


